The fungal secreted virulence effector induces allergic inflammation via TLR4

0
  • Armstrong-James, D., Meintjes, G. & Brown, GD. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol. 22120-127 (2014).

    CAS PubMed article Google Scholar

  • Brown, GD et al. Hidden killers: human fungal infections. Science. Transl. Med. 4165rv13 (2012).

    PubMed article CAS Google Scholar

  • Zhao, Y., Lin, J., Fan, Y. & Lin, X. Life cycle of Cryptococcus neoformans. Annual Rev. Microbiol. 7317-42 (2019).

    CAS PubMed article Google Scholar

  • Müller, U. et al. Abrogation of IL-4 receptor α-dependent alternatively activated macrophages is sufficient to allow, despite persistent TH2 answer. international Immunol. 25459-470 (2013).

    PubMed article CAS Google Scholar

  • Müller, U. et al. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation in pulmonary infection of mice with Cryptococcus neoformans. J. Immunol. 1795367-5377 (2007).

    CAS article Google Scholar

  • Wiesner, DL et al. Chitin recognition via chitotriosidase promotes pathological type 2 helper T cell responses to cryptococcal infection. PLoS Pathog. 11e1004701 (2015).

    PubMed PubMed Central Article CAS Google Scholar

  • Schulze, B. et al. CD4+FoxP3+ Regulatory T cells suppress fatal T helper 2 cell immunity during pulmonary fungal infection. EUR. J. Immunol. 443596-3604 (2014).

    CAS PubMed article Google Scholar

  • Stenzel, W. et al. IL-4/IL-13-dependent alternative activation of macrophages but not microglial cells is associated with uncontrolled cerebral cryptococcosis. Am. J Pathol. 174486-496 (2009).

    CAS PubMed PubMed Central article Google Scholar

  • Trompette, A. et al. Allergenicity due to functional mimicry of a protein of the Toll-like receptor complex. Nature 457585-588 (2009).

    ADS CAS PubMed article Google Scholar

  • Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. nat. medication fifteen410-416 (2009).

    CAS PubMed PubMed Central article Google Scholar

  • Eisenbarth, SC et al. Lipopolysaccharide-enhanced Toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med. 1961645-1651 (2002).

    CAS PubMed PubMed Central article Google Scholar

  • Millien, VO et al. Cleavage of fibrinogen by proteinases triggers allergic reactions through Toll-like receptor 4. Science 341792-796 (2013).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Ademe, M. & Girma, F. Candida Auris: from multidrug resistance to pan-resistant strains. Infect. drug resistance. 131287-1294 (2020).

    CAS PubMed PubMed Central article Google Scholar

  • Wall, G. & Lopez-Ribot, JL Current antifungal drugs, new perspectives, and future approaches to antifungal therapy. antibiotics 9445 (2020).

    CAS PubMed Central Article Google Scholar

  • Selin, C., de Kievit, TR, Belmonte, MF & Fernando, WGD Elucidating the role of effectors in plant-fungus interactions: advances and challenges. Front. microbiological 7600 (2016).

    PubMed PubMed Central article Google Scholar

  • Rajasingham, R. et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. infect the lancet. Dis. 17873-881 (2017).

    PubMed PubMed Central article Google Scholar

  • Müller, U. et al. The lack of IL-4 receptor expression on T helper cells reduces T helper 2 cell polyfunctionality and confers resistance in allergic bronchopulmonary mycosis. mucosal immunol. 5299-310 (2012).

    CAS article Google Scholar

  • Kindermann, M. et al. Group 2 innate lymphoid cells (ILC2) suppress useful type 1 immune responses during pulmonary cryptococcosis. Front. Immunol. 11209 (2020).

    CAS PubMed PubMed Central article Google Scholar

  • May RC, Stone NRH, Wiesner DL, Bicanic T & Nielsen K. cryptococci: from environmental saprophyte to global pathogen. nat. Rev. Microbiol. 14106-117 (2016).

    CAS PubMed article Google Scholar

  • Vecchiarelli, A. Immunoregulation by capsular components of Cryptococcus neoformans. Med. Mycol. 38407-417 (2000).

    CAS PubMed article Google Scholar

  • Liu, OW et al. Systematic genetic analysis of the virulence of the human fungal pathogen Cryptococcus neoformans. cell 135174-188 (2008).

    CAS PubMed PubMed Central article Google Scholar

  • Homer, CM et al. Intracellular action of a secreted peptide required for fungal virulence. cell host microbe 19849-864 (2016).

    CAS PubMed PubMed Central article Google Scholar

  • Stergiopoulos, I. & de Wit, PJGM fungal effector proteins. Annual Rev. Phytopathol. 47233-263 (2009).

    CAS PubMed article Google Scholar

  • Arras, SDM, Chitty, JL, Blake, KL, Schulz, BL & Fraser, JA A genomic safe haven for mutant complementation in Cryptococcus neoformans. Plus one 10e0122916 (2015).

    PubMed PubMed Central Article CAS Google Scholar

  • Brown, JCS et al. Deciphering the biology of a fungal meningitis pathogen using chemical genetics. cell 1591168-1187 (2014).

    CAS PubMed PubMed Central article Google Scholar

  • Kumar, P. et al. Pbx proteins in Cryptococcus neoformans Cell wall conversion and capsule assembly. eukaryotes. cell 13560-571 (2014).

    PubMed PubMed Central Article CAS Google Scholar

  • Kawakami K, Zhang T, Qureshi MH & Saito A. Cryptococcus neoformans inhibits nitric oxide production by mouse peritoneal macrophages stimulated with interferon-gamma and lipopolysaccharide. Cell. Immunol. 18047-54 (1997).

    CAS PubMed article Google Scholar

  • Gibbs, KD et al. That salmonella The secreted effector SarA/SteE mimics cytokine receptor signaling to activate STAT3. cell host microbe 27129–139.e4 (2020).

    CAS PubMed article Google Scholar

  • Panagi, I. et al. salmonella Effector SteE converts the mammalian serine/threonine kinase GSK3 into a tyrosine kinase to control macrophage polarization. cell host microbe 2741–53.e6 (2020).

    CAS PubMed PubMed Central article Google Scholar

  • Kasmi, El, KC et al. Toll-like receptor-induced arginase 1 in macrophages prevents effective immunity against intracellular pathogens. nat. Immunol. 91399-1406 (2008).

    PubMed PubMed Central Article CAS Google Scholar

  • Deguine, J. & Barton, GM MyD88: a key player in innate immune signaling. F1000 Prime Rep. 697 (2014).

    PubMed PubMed Central article Google Scholar

  • Lind NA, Rael V, Pestal K, Liu B & Barton GM Regulation of the Nucleic Acid-Sensing Toll-like Receptors. nat. Rev. Immunol. 22224-235 (2022).

    CAS PubMed article Google Scholar

  • Lancaster, GI et al. Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. cellular metabolism 271096–1110.e5 (2018).

    CAS PubMed article Google Scholar

  • Zanoni, I. et al. CD14 controls LPS-induced Toll-like receptor 4 endocytosis. cell 147868-880 (2011).

    CAS PubMed PubMed Central article Google Scholar

  • Hagar JA, Powell DA, Aachoui Y, Ernst RK & Miao EA Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 3411250-1253 (2013).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 3411246-1249 (2013).

    ADS CAS PubMed article Google Scholar

  • Chevigné, A. & Jacquet, A. New roles of the protease allergen Derp1 in house dust mite-induced airway inflammation. J Allergy Clinic. Immunol. 142398-400 (2018).

    PubMed article CAS Google Scholar

  • Jacquet, A. Characterizing innate immune responses to house dust mite allergens: pitfalls and limitations. Front. allergy 2662378 (2021).

    PubMed PubMed Central article Google Scholar

  • Evren, E., Ringqvist, E. & Willinger, T. Origin and ontogeny of lung macrophages: from mouse to human. immunology 160126-138 (2020).

    CAS PubMed article Google Scholar

  • N Makita, Y Hizukuri, K Yamashiro, M Murakawa & Y Hayashi. international Immunol. 27131-141 (2015).

    CAS PubMed article Google Scholar

  • Price, JV & Vance, RE The macrophage paradox. immunity 41685-693 (2014).

    CAS PubMed article Google Scholar

  • Chun, CD & Madhani, HD Application of Genetics and Molecular Biology to the Study of the Human Pathogen Cryptococcus neoformans. Methods Enzymol. 470797-831 (2010).

    CAS PubMed PubMed Central article Google Scholar

  • Share.

    Comments are closed.